Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Karl E. Bessler, ${ }^{\text {a* }}$ *
Leandro A. de P. Calzavara, ${ }^{\text {a }}$ Victor M. Deflon ${ }^{\text {a }}$ and Elke Niquet ${ }^{\text {b }}$
${ }^{\text {a }}$ Universidade de Brasília, Instituto de Química, 70919-970 Brasília -DF, Brazil, and ${ }^{\text {b }}$ Universität Tübingen, Institut für Anorganische Chemie, D-72076 Tübingen, Germany

Correspondence e-mail: bessler@unb.br

Key indicators

Single-crystal X-ray study
$T=213 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.052$
$w R$ factor $=0.152$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(μ-tricyanomethanido)tetrakis(triphenylphosphine)dicopper(I)

Colourless crystals of the title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{~N}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{4}\right]$, were obtained by the reaction of $\mathrm{CuC}(\mathrm{CN})_{3}$ with excess of molten PPh_{3}. The crystal structure contains centrosymmetric dimeric units bridged by two $\mathrm{C}(\mathrm{CN})_{3}$ ligands. The Cu atoms have a distorted tetrahedral coordination.

Comment

The pseudohalide tricyanomethanide $\mathrm{C}(\mathrm{CN})_{3}{ }^{-}$is well known as a versatile ligand in coordination compounds. With four available lone electron pairs, its coordination modes vary from unidentate terminal to bi- or tridentate bridging ligand (Golub et al., 1986). Continuing our structural studies on the coordination behaviour of pseudohalides in the system $M\left(\mathrm{PPh}_{3}\right)_{n} X$, $M=\mathrm{Cu}(\mathrm{I}), \mathrm{Ag}(\mathrm{I})$ or $\mathrm{Au}(\mathrm{I})$, we present here the crystal and molecular structure of $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{C}(\mathrm{CN})_{3}\right\}\right]_{2}$. So far, $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{C}(\mathrm{CN})_{3}\right\}\right]$ is the only structurally characterized example involving tricyanomethanide within the abovementioned system (Baukova et al. 1989; Wang \& Wang, 1993).

(I)

The crystal structure of the title compound is built up of centrosymmetric dimeric molecules, in which two Cu atoms are asymmetrically bridged end-to-end by two $\mathrm{C}(\mathrm{CN})_{3}$ ligands, forming a twelve-membered non-planar ring. The distorted tetrahedral coordination at the Cu atoms is completed by two triphenylphosphine ligands, showing wide $\mathrm{P}-\mathrm{Cu}-\mathrm{P}$ and small $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angles of $124.87(3)^{\circ}$ and $95.92(12)^{\circ}$, respectively. The $\mathrm{Cu}-\mathrm{N}$ distances are 2.027 (3) and 2.090 (3) \AA. The corresponding $\mathrm{Cu}-\mathrm{N}-\mathrm{C}$ bond angles are 159.6 (3) and 151.7 (3) A. The $\mathrm{C}(\mathrm{CN})_{3}$ ligand does not differ significantly from the ideal planar $D_{3 \mathrm{~h}}$ geometry of noncoordinated tricyanomethanide. The largest deviation from the mean plane is observed for $\mathrm{C} 1[0.0718$ (36) \AA]. The bond length $\mathrm{C}(13)-\mathrm{N}(13)$ of the non-coordinated cyano group is slightly shorter $[1.131(5) \AA$ A compared to the coordinated cyano groups $\mathrm{C}(12)-\mathrm{N}(12)[1.144(4) \AA$] and $\mathrm{C}(11)-\mathrm{N}(11)$

Received 21 September 2001
Accepted 3 October 2001
Online 13 October 2001

Figure 1
A view of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[1.152 (4) \AA]. The $\mathrm{C}-\mathrm{N}$ distances in non-coordinated tricyanomethanide lie within the range 1.131-1.139 A (Potočňák et al., 1997, 1998). Selected bond lengths and angles are given in Table 1. Similar end-to-end bridged structures were found for $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~N}(\mathrm{CN})_{2}\right]_{2} \quad$ (Bessler et al., 2000) and $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{~N}_{3}\right]_{2}$ (Ziolo et al., 1971).

Experimental

$\mathrm{KC}(\mathrm{CN})_{3}$ was prepared according to Trofimenko et al. (1962). $\mathrm{CuC}(\mathrm{CN})_{3}$ was obtained from $\mathrm{KC}(\mathrm{CN})_{3}, \mathrm{CuSO}_{4}$ and NaHSO_{3} in $\mathrm{H}_{2} \mathrm{O}$ solution as a microcrystalline precipitate. $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{C}(\mathrm{CN})_{3}\right]_{2}$ was synthesized by the reaction of $\mathrm{CuC}(\mathrm{CN})_{3}$ in molten PPh_{3} at 373 K . The excess PPh_{3} was removed with n-hexane and the residue was submitted to continuous extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, from which the title compound was obtained in high yield as colourless crystal plates, m.p. 498 K . Elem. anal. (calc. for $\mathrm{C}_{40} \mathrm{H}_{20} \mathrm{CuN}_{3} \mathrm{P}_{2} /$ found) $\mathrm{C}=70.84 / 70.63$, $\mathrm{rn}>\mathrm{H}=4.46 / 4.15 \mathrm{~N}=6.20 / 6.15 \%$.

Crystal data

$\mathrm{C}_{80} \mathrm{H}_{60} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{P}_{4}$
$M_{r}=1356.30$
Triclinic, $P \overline{1}$
$a=12.113(3) \AA$
$b=12.8530(16) \AA$
$c=13.0084(14) \AA$
$\alpha=85.113(11)^{\circ}$
$\beta=69.290(12)^{\circ}$
$\gamma=66.945(13)^{\circ}$
$V=1739.7(5) \AA^{\circ}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.295 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{CuK} K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 25 reflections
$\theta=29.9-50.2^{\circ}$
$\mu=2.00 \mathrm{~mm}^{-1}$
$T=213$ (2) K
Block, colourless
$0.50 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
ω scans
Absorption correction: ψ scan
\quad (Spek, 1997)
$\quad T_{\min }=0.634, T_{\max }=0.817$
6696 measured reflections
5840 independent reflections
5634 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0797 P)^{2}\right. \\
&+2.1459 P], \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.64 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.87 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.152$
$S=1.10$
5840 reflections
415 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{N} 12$	$2.027(3)$	$\mathrm{C} 11-\mathrm{C} 1$	$1.404(5)$
$\mathrm{Cu}-\mathrm{N} 11$	$2.090(3)$	$\mathrm{C} 1-\mathrm{C} 13$	$1.402(5)$
$\mathrm{Cu}-\mathrm{P} 1$	$2.2607(8)$	$\mathrm{C} 1-\mathrm{C} 12^{\mathrm{i}}$	$1.402(4)$
$\mathrm{Cu}-\mathrm{P} 2$	$2.2916(9)$	$\mathrm{C} 12-\mathrm{N} 12$	$1.144(4)$
$\mathrm{N} 11-\mathrm{C} 11$	$1.152(4)$	$\mathrm{C} 13-\mathrm{N} 13$	$1.131(5)$
$\mathrm{N} 12-\mathrm{Cu}-\mathrm{N} 11$	$95.92(12)$	$\mathrm{N} 11-\mathrm{C} 11-\mathrm{C} 1$	$176.8(3)$
$\mathrm{N} 12-\mathrm{Cu}-\mathrm{P} 1$	$119.59(9)$	$\mathrm{C} 13-\mathrm{C} 1-\mathrm{C} 12^{\mathrm{i}}$	$121.1(3)$
$\mathrm{N} 11-\mathrm{Cu}-\mathrm{P} 1$	$105.21(8)$	$\mathrm{C} 13-\mathrm{C} 1-\mathrm{C} 11$	$121.3(3)$
$\mathrm{N} 12-\mathrm{Cu}-\mathrm{P} 2$	$103.34(9)$	$\mathrm{C} 12^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 11$	$117.2(3)$
$\mathrm{N} 11-\mathrm{Cu}-\mathrm{P} 2$	$102.77(9)$	$\mathrm{N} 12-\mathrm{C} 12-\mathrm{C} 1^{\mathrm{i}}$	$176.9(3)$
$\mathrm{P} 1-\mathrm{Cu}-\mathrm{P} 2$	$124.87(3)$	$\mathrm{C} 12-\mathrm{N} 12-\mathrm{Cu}$	$159.6(3)$
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{Cu}$	$151.7(3)$	$\mathrm{N} 13-\mathrm{C} 13-\mathrm{C} 1$	$178.7(5)$

Symmetry code: (i) $1-x, 2-y, 2-z$.
The terminal N13 atom exhibits greater displacement parameters due to its thermal movements. No improvement of the structure factors model can be achieved by splitting it into two positions. The H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.94 \AA)$ and allowed to ride with isotropic displacement parameters 20% larger than those of the attached C atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius 1994); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1997), ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to Professor J. Strähle for the use of the diffractometer and to Deutscher Akademischer Austauschdienst for a scholarship (VMD).

References

Baukova, T. V., Kravtsov, D. N., Kuz'mina, L. G., Dvortsova, N. V., PoraiKoshits, M. A. \& Perevalova, E. G. (1989). J. Organomet. Chem. 372, 465471.

Bessler, K. E., Romualdo, L. L. \& Deflon, V. M. (2000). Z. Anorg. Allg. Chem. 626, 1942-1945.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Golub, A. M., Köhler, H. \& Skopenko, V. V. (1986). Chemistry of Pseudohalides, pp. 413-433. Amsterdam: Elsevier.
Potočňák, I., Dunai-Jurčo, M., Mikloš, D., \& Jäger, L. (1997). Acta Cryst. C53, 1215-1218.
Potočňák, I., Dunai-Jurčo, M., Mikloš, D., \& Jäger, L. (1998). Acta Cryst. C54, 1760-1763.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). HELENA and PLATON. University of Utrecht, The Netherlands.
Trofimenko, S., Little, E. L. \& Mower, H. F. (1962). J. Org. Chem. 27, 433-440. Wang, J. C. \& Wang Y. Acta Cryst. (1993). C49, 131-132.
Ziolo, R. F., Gaughan, A. P., Dori, Z., Pierpont, C. G. \& Eisenberg, R. (1971). Inorg. Chem. 10, 1289-1295.

